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We study Bose–Einstein Condensation (BEC) in the Infinite-Range-Hopping Bose–
Hubbard model with repulsive on-site particle interaction in the presence of an ergodic
random single-site external potential with different distributions. We show that the
model is exactly soluble even if the on-site interaction is random. We observe new
phenomena: instead of enhancement of BEC for perfect bosons, for constant on-site
repulsion and discrete distributions of the single-site potential there is suppression
of BEC at certain fractional densities. We show that this suppression appears with
increasing disorder. On the other hand, the suppression of BEC at integer densities
observed in Bru and Dorlas (J. Stat. Phys. 113:177–195, 2003) in the absence of a
random potential, can disappear as the disorder increases. For a continuous distribution
we prove that the BEC critical temperature decreases for small on-site repulsion while
the BEC is suppressed at integer values of the density for large repulsion. Again, the
threshold for this repulsion gets higher, when disorder increases.
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1. INTRODUCTION

Lattice Bose-gas models were invented as an alternative way to understand con-
tinuous interacting boson systems including liquid Helium, see Ref. 1 and a very
complete review. (2) But recent experiments with cold bosons in traps of three-
dimensional optical lattice potentials show that lattice models are also relevant for
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Cedex 09, France; e-mail: zagrebnov@cpt.univ-mrs.fr

1137

0022-4715/06/0900-1137/0 C© 2006 Springer Science+Business Media, Inc.



1138 Dorlas, Pastur and Zagrebnov

describing the experimentally observed Mott insulator-superfluid (or condensate)
phase transition. (3) In Ref. 4 and then in Ref. 5, this phenomenon was analyzed
rigorously in the framework of the so-called Bose–Hubbard model.

The aim of the present paper is to study a disordered Bose–Hubbard model
and in particular the influence of the single-site potential randomness on the
Bose–Einstein condensate (BEC).

Notice that the first attempts to understand this influence go back to Refs. 6–8
for continuous Perfect Bose-Gases (PBG) in a random potential of impurities. For
the rigorous solution of this problem, see Ref. 9. One of the principal result of Ref. 9
is that the randomness enhances the BEC. For example, the one-dimensional PBG
has no BEC because of the high value of the one-particle density of states in the
vicinity of the bottom of the spectrum above the ground state, making the integral
for the critical particle density infinite. The presence of a non-negative homoge-
neous ergodic random potential modifies the one-particle density of states (due
to the Lifshitz tail) in such a way that the integral for the critical density becomes
finite. Hence, the one-dimensional PBG with random potential does manifest
BEC. The nature of this BEC is close to what is known as the “Bose-glass” since
it may be localized by the random potential. (10) This is of interest for experiments
with liquid 4 He in random environments like Aerogel and Vycor glass. (11,12)

On the other hand, the nature and behaviour of the lattice BEC may be
quite different. First of all, the lattice Laplacian and the Bose–Hubbard interaction
produce a coexistence of the BEC (superfluidity) and the Mott insulating phase
as well as domains of incompressibility, see e.g. Refs. 11 and 13 Adding disorder
makes the corresponding models much more complicated. The physical arguments
(11,13) show that the randomness may suppress the BEC (superfluidity) as well as
the Mott phase in favour of the localized Bose-glass phase, but this is very sensitive
to the choice of the random distribution.

Since there are very few rigorous results about the BEC in disordered systems,
we consider here a single-site random version of the lattice Infinite-Range Hopping
(IRH) Bose–Hubbard model, which in the non-random case has recently been
studied in detail for all temperatures and chemical potentials in Ref. 4.

This paper is organized as follows. In Sec. 2, we define the lattice Laplacian
for finite- and infinite-range hopping and recall the results about BEC for the free
lattice Bose-gas. We then introduce a random on-site particle interaction and a
random single-site potential and state our main result (Theorem 2.1) about the
existence of and an explicit formula for the pressure for the IRH Bose–Hubbard
model with these types of randomness. We prove the main theorem using the
approximating Hamiltonian method.

In Sec. 3 we consider the pressure for extremal cases of hard-core and
perfect bosons. We show that they are the limits of the IRH Bose–Hubbard
model pressure when the on-site particle interaction tends respectively to +∞ and
to 0.
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In Sec. 4, we analyse the phase diagram in the case of a non-random on-site
particle interaction and a random single-site external potential. We distinguish
a number of different cases. We start with perfect bosons and show that the
randomness enhances BEC in this case, see Sec. 4.1. This is no longer true
for interacting bosons. We study in Sec. 4.2 the phase diagram for a discrete
distribution of independent identically distributed (i.i.d.) single-site potentials.
We first consider the case of Bernoulli single-site potentials and then that of
trinomial and multinomial discrete distributions.

For hard-core bosons (infinite on-site repulsion) we show that, in the case of
a Bernoulli distribution, where the single-site potentials εω

x are equal to a positive
constant ε > 0 with probability p and equal to 0 with probability 1 − p, in addi-
tion to the complete suppression of BEC at the extremal allowed densities ρ = 0
and ρ = 1, there is also suppression of the BEC at a new point ρ = 1 − p, if ε is
large. We also prove that for large but finite on-site repulsion the suppression of
BEC at integer densities persists, and also occurs for fractional values of the den-
sity ρ = n − p, n = 1, 2, . . ., provided the Bernoulli potential amplitude is large
enough. In fact we find that increasing the Bernoulli potential amplitude (disorder)
decreases the critical BEC temperature in the vicinity of fractional values of the
density, but increases it for integer values of the density. A similar phenomenon oc-
curs also for (equiprobable) trinomial distributions, but now for densities ρ = n/3.
Our numerical calculations demonstrate that a similar phenomenon should be true
for a general multinomial distribution.

As illustration of a continuous distribution we study a homogeneous distribu-
tion with compact support in Sec. 4.3. Then, for hard-core bosons, we prove that
complete suppression of BEC occurs only at the extremal allowed densities ρ = 0
and ρ = 1, while the suppression at integer values of the density is incomplete
for a finite on-site repulsion. In particular we show that the critical BEC temper-
ature gets lower, when one switches on disorder for (a small) on-site interaction,
whereas it gets higher for perfect bosons. For large values of the on-site interac-
tion the picture is similar to that for discrete distributions: increasing of disorder
increases the critical BEC temperature in the vicinity of integer values of density
but increases it for complimentary values of density.

In Sec. 5 we summarize and discuss our results.

2. MODEL AND MAIN THEOREM

2.1. Bose–Hubbard Models and a Variational Formula for the

Pressure in the Case of Infinite-Range Hopping

For simplicity, we shall consider the Bose–Hubbard model only with
periodic boundary conditions. So let � := {x ∈ Z

d : −Lα/2 ≤ xα < Lα/2,

α = 1, . . . , d} be a bounded rectangular domain of the cubic lattice Z
d wrapped
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onto a torus. Then the set �∗ := {qα = 2πn/Lα : n = 0,±1,±2, . . . ± (Lα/2 −
1), Lα/2, α = 1, 2, . . . d} is dual to � with respect to Fourier transformation on
the domain � = L1 × L2 × . . . × Ld of volume |�| = V .

The standard one-particle Hilbert space for the set � can be taken as h(�) :=
C

� with the canonical basis {ex }x∈�, i.e. ex (y) = δx , y . Then for any element u =∑
x∈� ux ex ∈ h(�) the one-particle kinetic-energy (hopping) operator is defined

by

(t�u)(x) :=
∑

y∈�

t�
x , y(ux − uy), (2.1)

where

t�
x y = 1

V

∑

q∈�∗
t̂qeiq(x−y), (2.2)

is the periodic extension in domain � of a symmetric, translation invariant and
positive-definite matrix, i.e.

t̂q =
∑

y∈�

t�
0 , yeiqy ≥ 0. (2.3)

Notice that functions {(êq )(y) := eiqy/
√

V }q∈�∗ also form a basis in h(�), i.e. for
any u ∈ h(�) one has u = ∑

q∈�∗ uq êq .
Let FB(�) := FB(h(�)) be the boson Fock space over h(�). For any f ∈

h(�)) we can associate in this space the creation and annihilation operators

a∗( f ) :=
∑

y∈�

a∗
y f (y), a( f ) :=

∑

y∈�

ay f ∗(y). (2.4)

By (2.4) we obtain: a∗
x = a(ex )∗, ax = a(ex ) and â∗

q = a∗(êq ), âq := a(êq ), for
the boson creation and annihilation operators corresponding respectively to the
basis elements ex and êq . They satisfy the lattice Canonical Commutation Rela-
tions (CCR):

[
ax , a∗

y

] = δx , y and
[
âq , â∗

p

] = δq , p. Then nx = a∗
x ax is the one-site

number operator, and

N� :=
∑

x∈�

nx =
∑

q∈�∗
â∗

q âq , (2.5)

is the total number operator.
The second quantization of the hopping operator (2.1) in FB(�) gives the

free boson Hamilton of the form

T� :=
∑

x ∈�

a∗
x (t�a)x = 1

2

∑

x,y ∈�

t�
x y(a∗

x − a∗
y )(ax − ay) =

∑

q∈�∗
(t̂0 − t̂q )â∗

q âq .

(2.6)
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If hopping is allowed only between the nearest neighbor (n.n.) sites with equal
probabilities, then t� = −� corresponds to minus the lattice Laplacian, i.e.

t�
x y =

d∑

α=1

(δx+1α , y + δx−1α , y), (2.7)

where (x ± 1α)β = xβ ± δα , β . In this case the one-particle hopping operator spec-
trum is

ε(q) := (t̂0 − t̂q ) =
d∑

α=1

4 sin2(qα/2) ≥ 0, q ∈ �∗, (2.8)

with eigenfunctions {êq}q∈�∗ .
It is known that the lattice free Bose-gas (2.6) with n.n. hopping manifests

the zero-mode BEC when d > 2, since the spectral density of states Nd (dε)
corresponding to (2.7) is small enough to make the critical particle density ρfree

c (β)
bounded for a given temperature β−1:

ρfree
c, n.n.(β) := lim

µ↑0
lim
�

1

V

∑

q∈�∗

1

eβ(ε(q)−µ) − 1
= 1

(2π )d

∫

Bd

ddq
1

eβε(q) − 1
(2.9)

=
∫

R+
Nd (dε)

1

eβε − 1
< ∞.

Here lim� stands for the thermodynamic limit � ↑ Z
d , by Bd := [−π, π ]d we

denote the first Brillouin zone and the density of states Nd (dε) = {cdε
(d/2−1) +

o(ε(d/2−1))}dε for small ε.
A similar result is true for the Infinite-Range Hopping (IRH) Laplacian:

t�
x y = 1

V
(1 − δx , y), x, y ∈ �. (2.10)

By (2.10) the one-particle spectrum in this case takes the form:

ε(q) := (t̂0 − t̂q ) = (1 − δq,0) ≥ 0, q ∈ �∗. (2.11)

Therefore, it has a gap:

lim
q→0

ε(q) = 1 
= ε(0) = 0, (2.12)

and allowed values of the chemical potential are still µ ≤ 0. Since the density of
states is simply zero in the gap, and |�∗| = V |Bd |, we have Nd (dε) = δ(ε − 1)dε.
Therefore, the critical particle density has a bounded value:

ρfree
c, i.r.(β) = 1

(2π )d

∫

Bd

ddq
1

eβ − 1
= 1

eβ − 1
< ∞, (2.13)



1142 Dorlas, Pastur and Zagrebnov

for any dimensions. The latter implies a zero-mode BEC for densities ρ >

ρfree
c, i.r.(β).

The problem of existence of BEC gets much less obvious if one takes into
account the boson interaction. This is even the case for the simplest on-site
repulsive interaction

H� := T� + λ
∑

x∈�

nx (nx − 1), λ ≥ 0, (2.14)

known as the Bose–Hubbard model. (Notice that attraction: λ < 0 makes this
model unstable, see Ref. 2 for discussion of other cases.)

Remark 2.1. Concerning the model (2.14) the best rigorous results so far are:

• a proof of BEC for the n.n. lattice Laplacian and the hard-core boson
repulsion: λ = +∞, by Ref. 14 for the case of the half-filled lattice, see
also Ref. 15;

• a recent exact solution of the IRH Bose–Hubbard model (2.10), (2.14) for
any λ ≥ 0 by Ref. 4.

The aim of the the present paper is to study a disordered IRH Bose–Hubbard
model. Let (�,
, P) be a probability space. We define our basic model by the
random Hamiltonian:

Hω
� = 1

2V

∑

x,y∈�

(a∗
x − a∗

y )(ax − ay) +
∑

x∈�

λω
x nx (nx − 1) +

∑

x∈�

εω
x nx , (2.15)

where parameters {λω
x ≥ 0}x∈Z

d and {εω
x ∈ R

1}x∈Z
d , for ω ∈ �, are real-valued

random fields on Z
d .

Let D ⊂ Z
d be a finite subset of the lattice points D := {x j } j . For any

y ∈ Z
d the set τy(D) = {x j + y} j is a translation of the subset D by the vector y.

With a real-valued random field {ξω
x }x∈Z

d , ω ∈ �, one can associate the family of
consistent finite-dimensional distributions:

Pξ,D({Bx }x∈D) := P
{
ω ∈ � : ξω

x ∈ Bx , x ∈ D
}
,

corresponding to subsets D ⊂ Z
d and Borel sets {Bx }x∈D . Then this random field

is called stationary (or homogeneous) if these finite-dimensional distributions are
translation-invariant:

Pξ,D({Bx }x∈D) = Pξ,τy (D)({Bz}z∈τy (D)), y ∈ Z
d .

If, in addition, one has

lim
n→∞

1

n

n∑

k=0

Pξ,D1 ∪ τ k
y (D2) = Pξ,D1 Pξ,D2
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for any y ∈ Z
d , y 
= 0, and finite subsets D1,2 ⊂ Z

d , then the stationary random
field

{
ξω

x

}
x∈Z

d is called ergodic. A particular example of a stationary ergodic field
is a field

{
ξω

x

}
x∈Z

d of independent identically distributed (i.i.d.) random variables.
Below we assume that the random fields

{
λω

x ≥ 0
}

x∈Z
d and

{
εω

x ∈ R
1
}

x∈Z
d ,

for ω ∈ �, are stationary and ergodic.
We denote by

pω
�(β,µ) := p

[
Hω

�

]
(β,µ) := 1

βV
TrFB (�) exp

{−β
(
Hω

� − µN�

)}
(2.16)

the grand canonical pressure of the system (2.15) for given temperature β−1 and
chemical potential µ. For non-random parameters λω

x = λ ≥ 0 and εω
x = ε = 0

the model (2.15) was considered in ref. 4.
Our main theorem is a formula for the pressure of this model given some gen-

eral regularity conditions on the random parameters involved in the Hamiltonian
(2.15).

Theorem 2.1. Let the stationary, ergodic random fields
{
λω

x

}
x∈Z

d and
{
εω

x

}
x∈Z

d

be such that:

λmin := inf
x,ω

λω
x > 0, εmin := inf

x,ω
εω

x > −∞. (2.17)

Then for almost all ω ∈ �, i.e., almost sure (a.s.), there exists a non-random
thermodynamic limit of the pressure (2.16):

a.s. − lim
�

pω
�(β,µ) = p(β,µ), (2.18)

such that

p(β,µ) := sup
r≥0

{− r2 + β−1
E
{

ln Tr(FB )x
exp β

[
(µ − εω

x − 1)nx

− λω
x nx (nx − 1) + r (a∗

x + ax )
]}}

, (2.19)

where E (·) is the expectation with respect to the measure P. (FB)x denotes the
single-site Fock space, i.e. (FB)x = FB({x}).

Remark 2.2. Note that conditions (2.17), and in particular the first one, ensure
superstability of the Hamiltonian (2.15). The proof of (2.18) for λmin = 0 needs an-
other technique than that for Theorem 2.1. In Section 3.2 we consider a particular
case of non-random

{
λω

x = 0
}

x∈Z
d (perfect bosons).

We prove the main theorem in the next subsection.
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2.2. Proof of the Main Theorem

We first prove the following

Lemma 2.1. Let us add to Hamiltonian (2.15) the sources (16):

Hω
�(ν) := Hω

� −
√

V (νâ0 + νâ∗
0 ), ν ∈ C, (2.20)

and define the corresponding approximating Hamiltonian:

Hω
�(z, ν) := Hω

0�(z) −
√

V (νâ0 + νâ∗
0 ), (2.21)

where

Hω
0�(z) := Hω

0� + V |z|2 −
√

V (zâ0 + zâ∗
0 ), z ∈ C, (2.22)

and

Hω
0� :=

∑

x∈�

λω
x nx (nx − 1) +

∑

x∈�

(
εω

x + 1
)
nx . (2.23)

Then for all ω ∈ � and µ ∈ R
1 one obtains in the disk |ν| ≤ C0 the estimate

0 ≤ p
[
Hω

�(ν)
]− p

[
Hω

�(z�,ω(ν), ν)
] ≤ 1

V

{
u + w β−1∂ν ∂ν p

[
Hω

�(ν)
]}

.

(2.24)
for some constants u > 0, w > 0.

Proof: By definitions (2.5), (2.6), (2.11) and (2.23) the Hamiltonian (2.15) takes
the form

Hω
� = T� +

∑

x∈�

λω
x nx (nx − 1) +

∑

x∈�

εω
x nx = −â∗

0 â0 + Hω
0�. (2.25)

Since conditions (2.17) imply the estimate from below:

Hω
� ≥ −â∗

0 â0 + N� + λmin

∑

x∈�

nx (nx − 1) + εmin N� (2.26)

≥ λmin

V
N 2

� + (εmin − λmin)N�,

the Hamiltonian (2.25) is superstable. Thus, the pressure in (2.18) is defined for
all µ ∈ R

1.
By (2.20) and (2.21) we have

Hω
�(ν) − Hω

�(z, ν) = −(â0 − z
√

V )∗(â0 − z
√

V ), (2.27)

and by virtue of the Bogoliubov convexity inequality one gets the estimates:

0 ≤ p
[
Hω

�(ν)
]− p

[
Hω

�(z, ν)
] ≤ 1

V

〈
(â0 − z

√
V )∗(â0 − z

√
V )
〉

Hω
� (ν)

(2.28)
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for each realization ω ∈ �. Here 〈−〉Hω
� (ν) := 〈−〉Hω

� (ν) (β,µ) denotes the
grand-canonical quantum Gibbs state with Hamiltonian (2.20), and from now
on we systematically omit the arguments (β,µ). If we choose in the right-hand
side of (2.28)

z = 1√
V

〈â0〉Hω
� (ν) , (2.29)

then (2.28) implies the following estimate for each ω ∈ �:

0 ≤ p
[
Hω

�(ν)
]− sup

z∈C

p
[
Hω

�(z, ν)
] ≤ 1

V

〈
δâ∗

0 δâ0
〉
Hω

� (ν)
, (2.30)

where we denote

δâ0 := â0 − 〈â0〉Hω
� (ν) . (2.31)

Since (2.5) implies the estimates:

−
√

V (νâ0 + νâ∗
0 ) ≥ − |ν|2 â∗

0 â0 − V ≥ −|ν|2 N� − V, (2.32)

by virtue of (2.26) and (2.32) the Hamiltonian with sources (2.20) is also super-
stable:

Hω
�(ν) ≥ λmin

V
N 2

� + (εmin − λmin − |ν|2) N� − V, (2.33)

uniformly in ω ∈ � and in |ν| ≤ C0, for a fixed C0 ≥ 0. The superstability (2.33)
implies that there is a monotonous nondecreasing function M := M(β,µ) ≥ 0 of
µ ∈ R

1, such that for any ω ∈ � we have the bounds:
∣
∣
∣
∣

〈
â0/

√
V
〉

Hω
� (ν)

(β,µ)

∣
∣
∣
∣

2

= ∣
∣∂ν p

[
Hω

�(ν)
]

(β,µ)
∣
∣2

≤ 〈N�/V 〉Hω
� (ν) (β,µ) = ∂µ p

[
Hω

�(ν)
]

(β,µ) ≤ M2, (2.34)

and
∣
∣z�,ω(β,µ; ν)

∣
∣2 ≤ M2 (2.35)

for the maximizer z�,ω(ν) := z�,ω(β,µ; ν) in (2.30):

p
[
Hω

�(z�,ω(β,µ; ν), ν)
]

(β,µ) := sup
z∈C

p
[
Hω

�(z, ν)
]

(β,µ), (2.36)

uniform in |ν| ≤ C0. Notice that the maximizer satisfies the equation:

z�,ω(ν) = ∂ν p
[
Hω

�(z�,ω(ν), ν)
] =

〈
â0/

√
V
〉

Hω
� (z�,ω(ν), ν)

. (2.37)
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Moreover, by the same line of reasoning as in Ref. 20, Ch. 4 (see also Ref. 4) one
gets that for |ν| < C0 there are some u = u(M) > 0 and w = w(M) > 0 such that

〈
δâ∗

0 δâ0
〉
Hω

� (ν)
≤ {

u + w(δâ∗
0 , δâ0)Hω

� (ν)
}
, (2.38)

where

(δâ∗
0 , δâ0)Hω

� (ν) = β−1∂ν ∂ν p
[
Hω

�(ν)
]
. (2.39)

Then the estimates (2.30), (2.38) and definition (2.39) imply the estimate (2.24).
�

Proof of Theorem 2.1: Following(18) we define in the Hilbert space
L2({(Reν, Imν) ∈ R

2 : |ν| < C0}) the Dirichlet self-adjoint extension L̂V of the
operator

LV := I − w(βV )−1 ∂ν ∂ν . (2.40)

Here 4∂ν ∂ν = � coincides with the two-dimensional Laplacian operator in vari-
ables (Reν, Imν). The operator L̂V is invertible and L̂−1

V has the kernel (L̂−1
V )(ν, ν ′)

(Green function), and (L̂−1
V )(ν, ν ′) = 0 for |ν| = C0, or |ν ′| = C0, by the Dirich-

let boundary condition. Since the semigroup {exp [−t(L̂V − I )]}t≥0 is positivity
preserving, the same property is true for the operator L̂−1

V , see e.g., Ref. 19
Ch.X.4.

Now, let p(ν) := p[Hω
�(ν)] and p0(ν) := p[Hω

�(z�,ω(ν), ν)]. Since L̂−1
V is

positivity preserving, then (2.24)–(2.40) imply
(

L̂−1
V (p0 + u/V )

)
(ν) ≥ p(ν) , (2.41)

and by consequence the estimates

0 ≤ p
[
Hω

�(ν)
]− p

[
Hω

�(z�,ω(ν), ν)
] ≤

(
L̂−1

V (p0 + u/V )
)

(ν) − p0(ν)

≤
∫

|ν ′|<C0

dν ′
(

L̂−1
V

)
(ν, ν ′)

{
p0(ν ′) − p0(ν)

}+ u/V, (2.42)

where we used that
∫
|ν ′|<C0

dν ′(L̂−1
V )(ν, ν ′) = 1, |ν| < C0. By virtue of (2.35) and

(2.37) we obtain for the integral in the right-hand side of (2.42) the estimate:
∫

|ν ′|<C0

dν ′
(

L̂−1
V

)
(ν, ν ′)

{
p0(ν ′) − p0(ν)

} ≤

2M

∫

|ν ′|<C0

dν ′
(

L̂−1
V

)
(ν, ν ′)

∣
∣ν ′ − ν

∣
∣ = IV . (2.43)
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After change of variables to ξ = ν
√

V , we get

IV = 2M

V

∫

|ξ ′|<C0

√
V

dξ ′
(

L̂−1
V =1

)
(ξ, ξ ′)

∣
∣ξ ′ − ξ

∣
∣ ≤ M̃

V
. (2.44)

Here we used that in R
2 the Green function is known explicitly:

(
L̂−1

∞
)

(ξ, ξ ′) = w

2πβ
K0
( β

w

∣
∣ξ − ξ ′∣∣ ), (2.45)

where the Bessel function K0(x) � √
π/2x exp(−x) decays exponentially fast for

large x > 0. Therefore, (2.42) and (2.44) imply

0 ≤ p
[
Hω

�(ν)
]− p

[
Hω

�(z�,ω(ν), ν)
] ≤ O(1/V ), (2.46)

for all ω ∈ �, any β > 0, µ ∈ R
1 and |ν| < C0.

Notice that by definitions (2.23) and (2.22) for any z, ν ∈ C we get:

pω
�, appr(β,µ; z, ν) := p

[
Hω

�(z, ν)
]

(β,µ) = − |z|2 + 1

βV

∑

x∈�

ln TrFx

× exp β
[(

µ − εω
x − 1

)
nx − λω

x nx (nx − 1) + (z + ν)a∗
x + (z + ν)ax

]
.

(2.47)

Then ergodicity of the random fields
{
λω

x

}
x∈Z

d and
{
εω

x

}
x∈Z

d implies the existence
of the a.s. limit:

p appr(β,µ; z, ν) = a.s. − lim
�

pω
�, appr(β,µ; z, ν) = − |z|2 + β−1

E

{
ln TrFx

exp β
[(

µ − εω
x − 1

)
nx − λω

x nx (nx − 1) + (z + ν)a∗
x + (z + ν)ax

] }
,

(2.48)

i.e., the self-averaging (17) of the limiting approximating pressure pω
appr(β,µ; z, ν).

Now we put the source ν → 0 and we make the canonical (gauge) transfor-
mation:

ãx := ax ei arg z . (2.49)

Since Hamiltonian (2.22) is invariant with respect of this transformation, we get
that z = |z| := r and (cf. (2.47)):

p̃ω
�, appr(β,µ; r ) := pω

�, appr(β,µ; z = r, ν = 0) = p
[
Hω

�(r, 0)
]

(β,µ) = −r2

+ 1

βV

∑

x∈�

ln TrFx
exp β

[(
µ − εω

x − 1
)
nx − λω

x nx (nx − 1) + r (ã∗
x + ãx )

]
.

(2.50)
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Therefore, without source the maximizers in (2.36) can be defined only up to a
phase and their moduli satisfy the Equation:

r = 1

2V

∑

x∈�

〈
ãx + ã∗

x

〉
Hω

� (r,0)
=: ξω

�(r ), (2.51)

where

ξω
x (r ) := 〈

ãx + ã∗
x

〉
Hω

� (r,0)

=
TrFx

{
(ãx + ã∗

x ) exp β
[
(µ − εω

x − 1)nx − λω
x nx (nx − 1) + r (ã∗

x + ãx )
]}

TrFx
exp β

[
(µ − εω

x − 1)nx − λω
x nx (nx − 1) + r (ã∗

x + ãx )
] .

(2.52)

When r = 0, the approximating Hamiltonian (2.22) is invariant with respect
to canonical gauge transformations Uϕ ãxU∗

ϕ = ãx eiϕ for any ϕ. This implies
ξω

x (r = 0) = 0. Hence, Eq. (2.51) always has a trivial solution r = 0 and , more-
over, by (2.35) any nontrivial solution rω

� ≤ M .
Finally, differentiating (2.52) with respect to r we obtain:

0 ≤ ∂rξ
ω
x (r ) ≤ R, (2.53)

where, by the superstability (2.33), the upper bound R is finite uniformly in
ω, r, x . Hence, −2M ≤ ∂r p̃ω

�, appr(β,µ; r ) ≤ 2RM for r ∈ [0, M]. By conse-
quence the limit (2.48) implies the uniform a.s. convergence of the sequence
{ p̃ω

�, appr(β,µ; r )}� for r ∈ [0, M]:

p̃appr(β,µ; r ) = a.s. − lim
�

p̃ω
�,appr(β,µ; r ) = −r2 + β−1

E

{
ln TrFx

exp β
[(

µ − εω
x − 1

)
nx − λω

x nx (nx − 1) + r (ã∗
x + ãx )

]}
, (2.54)

Therefore,

a.s. − lim
�

sup
r≥0

p̃ω
�,appr(β,µ; r ) = sup

r≥0
p̃appr(β,µ; r ). (2.55)

Together with (2.46) and (2.48), the limit (2.55) proves the assertions (2.18) and
(2.19) of the theorem. �

Remark 2.3. The function ξω
x (r ) is increasing in r by virtue of (2.53). Moreover,

it has also been suggested that for any x ∈ Z
d and ω ∈ �, the function r �→ ξω

x (r )
is concave, see Ref. 4 for discussion of this conjecture. This implies that the
nontrivial solution of Eq. (2.51) is unique. Notice that homogeneity and ergodicity
of the random field random field {εω

x }x∈Z
d implies the same for the random field

{ξω
x }x∈Z

d defined by (2.52). Therefore, Eq. (2.51) in the thermodynamic limit takes
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the form:

r = a.s. − lim
�

ξω
�(r ) = 1

2
E
(
ξω

x=0(r )
) =: f (r ), (2.56)

expressing a self-averaging property of the order parameter r see Ref. 17. Since
the expectation in (2.56) preserves convexity, the solution of the limiting Eq. (2.56)
should also be unique. Therefore, with probability 1, the sequence of maximizers
{rω

�}� has a unique accumulation point in the interval [0, M]. Moreover, if rω
� is

the unique solution of Eq. (2.51), then

a.s. − lim
�

rω
� = r (β,µ), (2.57)

where r (β,µ) denotes the unique solution of Eq. (2.56).

To see this, note that since λmin > 0, by superstability we get rω
� ≤ M , see

(2.35), i.e.

0 ≤ lim
�

inf rω
� ≤ lim

�
sup rω

� ≤ M, (2.58)

for any ω ∈ �. Now suppose that there exists �> with P(�>) > 0 and a subse-
quence

{
rω
�n

}
n≥1

, ω ∈ �> such that

lim
n→∞ rω

�n
= rω

∗ > r (β,µ), ω ∈ �>. (2.59)

Then, by virtue of (2.51), (2.53), (2.56) and (2.59) we get:

ξω
�n

(rω
∗ ) − R

∣
∣rω

�n
− rω

∗
∣
∣ ≤ rω

�n
= ξω

�n
(rω

∗ + rω
�n

− rω
∗ ) ≤ ξω

�n
(rω

∗ ) + R
∣
∣rω

�n
− rω

∗
∣
∣ .

(2.60)
These estimates, together with the limit (2.59) and a.s.-convergence of ξω

�n
(r ) to

f (r ) for any r imply

rω
∗ = f (rω

∗ ) > r (β,µ), (2.61)

for any ω ∈ �> with P(�>) > 0, which is impossible by uniqueness of solution of
(2.56). Similarly one excludes the hypothesis rω

∗ < r (β,µ), which proves (2.57).

3. LIMITING HAMILTONIANS

3.1. Limit of Hard-Core Bosons

The hard-core (h.c.) interaction in the Bose–Hubbard model (2.14) corre-
sponds to λ = +∞, or λmin = +∞ for the IRH Bose–Hubbard model (2.15). This
formally discards from the boson Fock space FB(�) all vectors with more than
one particle at one site.
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Let �0 denote the vacuum vector in FB(�). Then the subspace F
h.c.
B (�) ⊂

FB(�), which corresponds to the hard-core restrictions, is spanned by the or-
thonormal vectors

�X =
∏

x∈X

a∗
x �0, X ⊂ �. (3.1)

Since the subspace F
h.c.
B (�) is closed, there is orthogonal projection P� onto

F
h.c.
B (�) such that

F
h.c.
B (�) = P� FB(�), (3.2)

and we get the representation

FB(�) = F
h.c.
B (�) ⊕ (

F
h.c.
B (�)

)⊥
, (3.3)

where the orthogonal compliment (Fh.c.
B (�))⊥ := (I − P)FB(�).

Since our main Theorem 2.1 is valid for any λmin > 0 and the estimate (2.46)
is uniform in λω

x , we can extend this theorem to the hard-core case by taking the
limit λmin → +∞.

For simplicity we consider the case of a sequence of non-random identical
and increasing positive {λω

x = λs > 0}∞s=1 such that λs → +∞.

Lemma 3.1. Let λs → +∞. Then for all ζ ∈ C : I m(ζ ) 
= 0, and for any ω ∈ �

and ν ∈ C we have the strong resolvent convergence of Hamiltonians (2.20):

lim
λs→+∞

(
Hω

�(s, ν) − ζ I
)−1

�

= P

[

T� +
∑

x∈�

εω
x nx −

√
V (νâ0 + νâ∗

0 ) − ζ I

]−1

P�, � ∈ FB(�), (3.4)

where

Hω
�(s, ν) := T� + λs

∑

x∈�

nx (nx − 1) +
∑

x∈�

εω
x nx −

√
V (νâ0 + νâ∗

0 ). (3.5)

The same is true for approximating Hamiltonians (2.21):

lim
λs→+∞

(
Hω,appr

� (s, z, ν) − ζ I
)−1

�

= P

[

V |z|2 −
√

V (zâ0 + zâ∗
0 ) +

∑

x∈�

(
εω

x + 1
)
nx −

√
V (νâ0 + νâ∗

0 ) − ζ I

]−1

P�,

(3.6)
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for any z ∈ C and � ∈ FB(�). Here

Hω,appr
� (s, z, ν) : = V |z|2 −

√
V (zâ0 + zâ∗

0 ) + N� + λs

∑

x∈�

nx (nx − 1)

+
∑

x∈�

εω
x nx −

√
V (νâ0 + νâ∗

0 ). (3.7)

Proof: By estimate (2.33) and (3.5) for 0 < λs < λs+1 we get:

λs

V
N 2

� + (
εmin − λs − |ν|2 ) N� − V ≤ Hω

�(s, ν) ≤ Hω
�(s + 1, ν). (3.8)

So, for any ω ∈ � and ν ∈ C Hamiltonians (3.5) form an increasing se-
quence of self-adjoint operators, semi-bounded from below. Let {hω

s (ν,�)[�] :=
(�, Hω

�(s, ν)�)FB (�)}∞s=1 be the corresponding monotonic sequence of closed
symmetric quadratic forms with domains dom hω

s (ν,�). Put

Q :=
⋂

s≥1

dom hω
s (ν,�), (3.9)

and let Q0 = Q be the closure of Q in the Hilbert space FB(�). Since for any
ω ∈ � and ν ∈ C

lim
λs→+∞

(
�, Hω

�(s, ν)�
)
FB (�)

= +∞, � ∈ (
F

h.c.
B (�)

)⊥
, (3.10)

one gets Q0 = F
h.c.
B (�) and the strong resolvent convergence (3.4) of

Hamiltonians, see e.g. Ref. 21, Ch. 4.4 or Ref. 22, Lemma 2.10. (Note that for hard
cores the space F

h.c.
B (�) is finite-dimensional, which makes these arguments even

simpler.) The strong resolvent convergence (3.4) of Hamiltonians implies also

lim
λs→+∞

(
�, Hω

�(s, ν)�
)
FB (�)

(3.11)

= (�, P[T� +
∑

x∈�

εω
x nx −

√
V (νâ0 + νâ∗

0 )]P�)
F

h.c.

B (�)
, � ∈ F

h.c.
B (�).

The same line of reasoning leads to (3.6) for approximating Hamiltonians. �

By the Trotter approximating theorem(23) the convergence (3.4) and (3.6)
yields the strong convergence of the Gibbs semigroups:

Corollary 3.1. The following strong limits exist:

s − lim
λs→+∞

e−βHω
�(s,ν) = e−βHω

h.c.,�(ν), (3.12)

where

Hω
h.c.,�(ν) := P[T� +

∑

x∈�

εω
x nx −

√
V (νâ0 + νâ∗

0 )]P, (3.13)
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and similarly

s − lim
λs→+∞

e−βHω,appr
� (s,z,ν) = e−βHω,appr

h.c.,� (z,ν), dom Hω
h.c.,�(ν) = F

h.c.
B (�) , (3.14)

where

Hω,appr
h.c.,� (z, ν) := P[V |z|2 −

√
V (zâ0 + zâ∗

0 ) +
∑

x∈�

(εω
x + 1)nx

−
√

V (νâ0 + νâ∗
0 )]P , (3.15)

with dom Hω,appr
h.c.,� (z, ν) = F

h.c.
B (�).

Since {e−β(Hω
� (s,ν)−µN�)}s≥1 is a sequence of trace-class operators from

C1(FB(�)) monotonously decreasing to the trace-class operator

e−β

(
Hω

h.c.,�(ν)−µN�

)

∈ C1(Fh.c.
B (�)),

the convergence (3.12) can be lifted to the trace-norm topology. (24) The same is
true for (3.14). It then follows that the pressures also converge:

Lemma 3.2.

lim
λs→+∞

p
[
Hω

�(s, ν)
] = p

[
Hω

h.c.,�(ν)
]
, (3.16)

lim
λs→+∞

p
[
Hω

�(s, z, ν)
] = p

[
Hω,appr

h.c.,� (z, ν)
]
. (3.17)

Since the estimate (2.46) is uniform in λ ≥ λmin > 0, we can take the limit
λs → +∞ to obtain

0 ≤ p
[
Hω

h.c.,�(ν)
]− p

[
Hω,appr

h.c.,� (z�,ω(ν), ν)
] ≤ O(1/V ), (3.18)

for all ω ∈ �, any β > 0, µ ∈ R
1 and |ν| < C0. Then, by the same line of reasoning

as after (2.46) in Theorem 2.1, we obtain the thermodynamic limit of the pressure
for the hard-core bosons:

Corollary 3.2. The pressure of the Infinite-Range-Hopping hard-core
Bose–Hubbard model with randomness is given by

ph.c.(β,µ) (3.19)

= sup
r≥0

{
−r2 + β−1

E
{

ln Tr
(F

h.c.

B )x
exp(β P

[(
µ − εω

x − 1
)
nx + r (a∗

x + ax )
]

P)
}}

,

cf. expression (2.19) for finite λ.
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Remark 3.1. To calculate the trace over F
h.c.
B note that the boson creation

and annihilation operators are quite different from the operators : c∗
x := Pa∗

x P,
cx := Pax P restricted to dom c∗

x = dom cx = F
h.c.
B , which occur in (3.19). The

major difference consists in their commutation relations:

[cx , c∗
y] = 0, (x 
= y), (cx )2 = (c∗

x )2 = 0, cx c∗
x + c∗

x cx = I. (3.20)

Taking the XY representation of relations (3.20) :

cx =
(

0 0

1 0

)

, c∗
x =

(
0 1

0 0

)

,

(3.19) gives the explicit formula

ph.c.(β,µ)

= sup
r≥0

{

−r2 + E

{
1

2

(
µ − εω

x − 1
)+ β−1 ln

[

2 cosh

(
1

2
β

√
(
µ − εω

x − 1
)2 + 4r2

)]}}

,

(3.21)

for the grand-canonical pressure for the random IRH hard-core Bose–Hubbard
model.

3.2. Limit of Perfect Bosons

The limit λ → 0 is more delicate. For simplicity, below we assume that
εmin = 0. Then Hamiltonian (2.15) for perfect bosons λω

x = 0 is non-negative, i.e.
the corresponding pressure exists in a finite volume only for negative chemical
potentials. There is an analogue of Lemma 3.1, if we subtract from this Hamiltonian
a term µN� with µ < 0 and assume ν small enough:

Lemma 3.3. Assume that εmin = 0 and let λs ↘ 0. Then for µ < 0, for all
ζ ∈ C : I m(ζ ) 
= 0, and for any ω ∈ �, we have the strong resolvent convergence
of Hamiltonians (2.20):

lim
λs↘0

(
Hω

�(s, ν
)− µN� − ζ I )−1� (3.22)

= {
T� +

∑

x∈�

(εω
x − µ)nx −

√
V (νâ0 + νâ∗

0 ) − ζ I
}−1

�, � ∈ FB(�),

for ν ∈ C, if |ν|2 < |µ|. The same is true for approximating Hamiltonians (2.21):

lim
λs↘0

(Hω,appr
� (s, z, ν) − µN� − ζ I )−1� = (3.23)

{
V |z|2 −

√
V
(
zâ0 + zâ∗

0

)+
∑

x∈�

(εω
x + 1 − µ)nx −

√
V (νâ0 + νâ∗

0 ) − ζ I
}−1

� ,



1154 Dorlas, Pastur and Zagrebnov

for any z ∈ C, ζ ∈ C : I m(ζ ) 
= 0 and � ∈ FB(�).

Proof: The bound (2.33) now yields:

Hω
�(s, ν, µ) := Hω

�(s, ν) − µN� ≥ (−µ − |ν|2)N� − V , (3.24)

so that for |ν|2 + µ < 0, the operators
{

Hω
�(s, ν, µ)

}
s≥1

are positive. As in
Lemma 3.1, for these operators we define the corresponding closed symmetric
quadratic forms by {hω

s (ν, µ,�)[�] := (�, Hω
�(s, ν, µ)�)FB (�)}∞s=1. Note that

they are monotonously decreasing and bounded from below, which implies that
for any ω ∈ �, ν ∈ C and � the operators

{
Hω

�(s, ν, µ)
}

s≥1
converge in the strong

resolvent sense, see e.g., Ref. 25 Ch. VIII, to a positive self-adjoint operator
Hω

�,0(ν, µ). Let us define the symmetric form

hω
∞[�] = lim

s→∞ hω
s [�], (3.25)

with domain

dom
(
hω

∞
) =

⋃

s≥1

dom
(
hω

s

)
.

It is known, (25) Ch. VIII, that if the form (3.25) is closable, then operator
Hω

�,0(ν, µ) is associated with the closure h̃ω
∞. By explicit expression of hω

s (ν, µ,�)
one gets that the limit form (3.25) is closable (and even closed), since it is associ-
ated with the self-adjoint operator Hω

�(s = ∞, ν, µ). Then the operator Hω
�,0(ν, µ)

associated with the closure h̃ω
∞ of (3.25) simply coincides with Hω

�(s = ∞, ν, µ):

h̃ω
∞[�] = (

�,
[
T� +

∑

x∈�

(
εω

x − µ
)
nx −

√
V (νâ0 + νâ∗

0 )
]
�
)
,

that proves (3.22).
A similar argument applies for the approximating Hamiltonians (2.21). But,

in contrast to the case of sources |ν|2 < |µ|, that we can choose as small as we
want to apply the main Theorem 2.1, the value of z will be defined by variational
principle (2.19) with λω

x ≥ 0. Now the semi-boundedness of
{

Hω,appr
� (s, z, ν)

}
s≥1

from below follows from the estimate
∑

x∈�

(
εω

x + 1 − µ
)
nx −

√
V ((ν + z)â0 + (ν + z)â∗

0 ) ≥ − V
|ν + z|2
1 − µ

. (3.26)

The rest of the arguments is identical to those for the operators (3.24), or equiv-
alently for the sequence {Hω

�(s, ν)}s≥1 , and goes through verbatim to give the
proof of the limit (3.23) with Hω,appr

� (s = ∞, z, ν) := Hω,appr
�,0 (z, ν). �

Corollary 3.3. In a full analogy with Corollary 3.1 and Lemma 3.2, the
Trotter approximation theorem and the monotonicity of the operator families
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{
Hω

�(s, ν)
}

s≥1
,
{

Hω,appr
� (s, z, ν)

}
s≥1

yield

lim
λs→0

p
[
Hω

�(s, ν)
] = p

[
Hω

�,0(ν)
]
, (3.27)

lim
λs→0

p
[
Hω,appr

� (s, z, ν)
] = p

[
Hω,appr

�,0 (z, ν)
]
. (3.28)

Notice that, similarly to the Weakly Imperfect Bose-Gas, (20) the estimate (2.46) for
µ < 0 is still uniform in λ ≥ 0. Therefore, we can take there the limit λs → 0 to
obtain

0 ≤ p
[
Hω

�,0(ν)
]− p

[
Hω,appr

�,0 (z�,ω(ν), ν)
] ≤ O(1/V ), (3.29)

for all ω ∈ �, any β > 0 and |ν|2 < −µ. Then, following the same line of rea-
soning as after (2.46) in Theorem 2.1, we obtain the thermodynamic limit of the
pressure for the perfect bosons:

p0(β,µ < 0) (3.30)

= sup
r≥0

{
−r2 + β−1

E
{

ln Tr(FB )x
exp

(
β
[(

µ − εω
x − 1

)
nx + r (a∗

x + ax )
] )}}

,

cf. expression (2.19) for finite λ, where all values of µ are allowed. Since we put
εmin = 0, the variational principle in (3.30) implies:

p0(β,µ < 0) = β−1
E
{

ln Tr(FB )x
exp

(
β
[(

µ − εω
x − 1

)
nx

] )}
(3.31)

= β−1
E

{
ln
[
1 − exp{β(µ − εω

x − 1
)}]−1

}
.

The convexity of
{

p
[
Hω

�,0(ν = 0)
]}

�
and the thermodynamic limit p0(β,µ) as

the functions of µ < 0, together with the Griffith lemma, see e.g. Ref. 20, yield the
convergence of derivative with respect of µ, i.e. the formula for the total particle
density:

ρ(β,µ < 0) = E

[
1

eβ(1+εω−µ) − 1

]

. (3.32)

Remark 3.2. As usual in the case of the perfect boson gas one recovers the value
of thermodynamic parameters at extreme point µ = 0 by continuation: µ → −0:

p0(β,µ = 0) := β−1
E

{
ln
[
1 − exp

{
β
(− εω

x − 1)}]−1
}

, (3.33)

ρ(β,µ = 0) := E

[
1

eβ(1+εω) − 1

]

. (3.34)
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In particular by (3.34) it gets clear that the gap (= 1) in the one-particle spectrum
of the perfect boson gas T� and εmin = 0 imply that the critical density

ρc(β) := sup
µ<0

ρ(β,µ) = ρ(β,µ = 0) (3.35)

is finite, cf. (2.12) and (2.13). This opens a room for the zero-mode Bose conden-
sation in the case of the random potential {εω

x }x .

4. PHASE DIAGRAM

Here we analyse only the case, when εω
x is random, but the interaction cou-

plings λω
x = λ ≥ 0 are fixed.

To proceed we recall first the formulae determining the critical temperature
βc(ρ, λ)−1 for the nonrandom case εω

x = 0. To this end we define, cf (2.50),

p̃(β,µ, λ; r ) := 1

β
ln TrH exp(−β [hn(µ, λ) − r (a∗ + a)]), (4.1)

where

hn(µ, λ) := (1 − µ)n + λn(n − 1). (4.2)

The Hilbert space H stands for a typical (FB)x and similarly, a and a∗ stand for
typical annihilation and creation operators ax and a∗

x defined on H. From Ref. 4 it
is known that the critical temperature (and the critical chemical potential µc(ρ, λ))
are defined, as functions of the total particle density ρ, by two equations:

p̃′′(β,µ, λ; 0) = 2, ρ = 1

Z0(β,µ, λ)

∞∑

n=1

n e−βhn (µ,λ). (4.3)

Here

p̃′′(β,µ, λ; 0) = 2

Z0(β,µ, λ)

∞∑

n=1

n
e−βhn (µ,λ) − e−βhn−1(µ,λ)

hn−1(µ, λ) − hn(µ, λ)
. (4.4)

and

Z0(β,µ, λ) =
∞∑

n=0

e−βhn (µ,λ).

If εω
x 
= 0 and λ > 0 then, by the Main Theorem 2.1 (see (2.19), (2.54) and

(4.2)), to obtain the equations for the critical temperature and the critical chemical
potential, we have to replace µ in (4.3) by µ − εω

x and average over εω
x . This gives,

instead of (4.3), the (gap) equation:

E
[

p̃′′(β,µ − εω, λ; 0)
] = 2, (4.5)
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and the equation for the density:

ρ = E

[
1

Z0(β,µ − εω, λ)

∞∑

n=1

n e−βhn (µ−εω, λ)

]

. (4.6)

The case of λ = 0 is more subtle, and we begin with it the next subsection.

4.1. Perfect Bosons: λ = 0

Without loss of generality, we can assume that the random εω takes values in
the interval [0, ε]. In that case the maximal allowed value for µ (i.e. the critical
value) is still µc = 0, and the critical inverse temperature βc := βc(ρ, λ = 0) is
given (see (3.34), (3.35)) by:

ρ = E

[
1

eβc(1+εω) − 1

]

. (4.7)

Remark that, irrespective of the distribution of εω, the Eq. (4.7) implies that
the resulting βc is lower than ln(1 + 1

ρ
), which corresponds to the nonrandom case

εω
x = 0, i.e. disorder enhances Bose–Einstein condensation. We shall see (Sec.

4.3.3) that this is no longer true when λ > 0, and even that the opposite holds, if
λ is small enough!

Notice that formula (4.7) is in agreement with the general expression found
in Ref. 9:

ρ =
∫

dN̄ (E)

eβc E − 1
, (4.8)

where N̄ (E) is the integrated density of states given by

N̄ (E) = a.s.− lim
V →∞

1

V
#
{
i : Eω

i ≤ E
}
. (4.9)

Here {Eω
i }i≥1 are the eigenvalues of the one-particle Hamiltonian with a random

potential {εω
x }x∈�:

(
hω

�u
)
(x) := (t�u)(x) +

∑

x∈�

εω
x u(x), x ∈ �, uh(�), (4.10)

for IR kinetic-energy hopping, see (2.1), (2.10), and #{i : Eω
i ≤ E} counting the

number of the corresponding eigenfunctions (including the multiplicity). It is
known that for any ergodic random potential {εω

x }x∈�, the limit (4.9) exists almost
surely (a.s.) and that it is non-random, see e.g. Ref. 17. A contact between formulae
(4.7) and (4.8) is given by the following
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Lemma 4.1. In the case of an i.i.d. random potential, the integrated density of
states is equal to

N̄ (E) = P [εω ≤ E − 1] = E [θ (E − 1 − εω)]. (4.11)

Proof: Fix E and let p = P [εω ≤ E − 1]. By the Central Limit Theorem, for
given δ > 0, there exists c > 0 such that with probability Pr > 1 − δ the number
of sites x ∈ � with εω

x ≤ E − 1 is in the interval (pV − c
√

V , pV + c
√

V ). Given
a configuration for which this is the case, let �ε ⊂ � be the set where εω

x ≤ E − 1.
Consider the states φ ∈ h(�) such that φ(x) = 0, if x /∈ �ε and

∑
x∈� φ(x) = 0.

Then

(
hω

�φ
)
(x) = 1

V

V∑

y=1

(φ(x) − φ(y)) + εω
x φ(x) ≤ Eφ(x), x ∈ �ε.

The space of such states φ has dimension |�ε| − 1, so that

#
{

Eω
i ≤ E

} ≥ (|�ε| − 1).

Dividing by V we get, in the limit V → ∞,

N̄ (E) ≥ p.

Similarly, considering the eigenfunctions with supports concentrated on �c
ε =

� \ �ε we obtain

1 − N̄ (E) ≥ 1 − p.

Together, these estimates prove (4.11). �

The relations (4.11) show that the formulae (4.7) and (4.8) are equivalent.
For details of a general statement see e.g. Ref. 17 Ch. II.5.

4.2. Discrete Random Potential and λ > 0

We now consider the case with interaction λ > 0, and first assume that the
probability distribution of i.i.d. εω

x is discrete.
A particularly simple case corresponds to the hard-core boson limit λ = +∞,

see Sec. 3. Then by (3.21) the equations for the critical value of the inverse
temperature βc := βc(ρ) = βc(ρ, λ = +∞) for a given density ρ, reduce to the
system:

E

[
tanh β(µ − εω − 1)/2

µ − εω − 1

]

= 1 (4.12)
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and

ρ = 1

2
+ 1

2
E

[

tanh
1

2
β(µ − εω − 1)

]

. (4.13)

The last Eq. (4.13) implies that for the hard-core interaction the total particle
density has the estimate: ρ ≤ 1.

4.2.1. Bernoulli Random Potential in the Hard-Core Limit λ = +∞.

A special case of a discrete distribution is the Bernoulli distribution, where
εω

x = ε with probability p and εω
x = 0 with probability 1 − p. We first consider

the case λ = +∞. The Eqs. (4.12) and (4.13) then read,

Fp,ε(β = βc, µ) := p
tanh 1

2βc(µ − ε − 1)

µ − ε − 1
+ (1 − p)

tanh 1
2βc(µ − 1)

µ − 1
= 1

(4.14)
and

G p,ε(β = βc, µ) := 1

2
+ 1

2

[

p tanh
1

2
βc(µ − ε − 1) + (1 − p) tanh

1

2
βc(µ − 1)

]

= ρ.

(4.15)

Here a new phenomenon occurs for density ρ = 1 − p. To see this, we
consider first a particular case of p = 1/2. Then ρ = 1/2, and by (4.15) we
obtain, that the only possible solution for the corresponding chemical potential is
µ(ρ = 1/2) := µ(ρ = 1/2, λ = +∞) = 1 + ε/2. Inserting this value of µ into
(4.14) we get for the critical temperature:

tanh
βcε

4
= 1

2
ε.

This equation obviously has no solution for ε ≥ 2. Therefore, there is no
Bose–Einstein condensation for Bernoulli random potential, if p = ρ = 1/2, and
ε is greater than some critical value: εcr = 2.

One can check that the same phenomenon occurs for p 
= 1/2 and for densi-
ties ρ = 1 − p, if ε is large enough, but now the reasoning is more delicate. First
of all, by (4.14) and tanh u ≤ u we see that in any case there is a lower bound on
the inverse critical temperature:

βc ≥ 2. (4.16)

Now assume that p < 1/2, i.e. ρ > 1/2. From (4.15) it then follows that for any
ε one has

0 < µ − 1 − 1

2
ε. (4.17)
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Indeed, if we suppose that 0 ≤ µ − 1 ≤ ε/2, then tanh 1
2βc(µ − 1) ≤

tanh 1
2βc(1 + ε − µ) and hence, by (4.15), we get

2ρ − 1 = p tanh
1

2
βc(µ − ε − 1) + (1 − p) tanh

1

2
βc(µ − 1)

≤ (1 − 2p) tanh
1

2
βc(ε + 1 − µ) < 1 − 2p,

contradicting our assumption ρ = 1 − p, if βc exists and is finite.
Now notice that (4.15) with ρ = 1 − p is equivalent to

1 − tanh 1
2βc(ε + 1 − µ)

1 − tanh 1
2βc(µ − 1)

= 1 − p

p
. (4.18)

The left-hand side of (4.18) can be estimated from below as

1 − tanh 1
2βc(ε + 1 − µ)

1 − tanh 1
2βc(µ − 1)

= eβc(µ−1−ε/2) + e−βcε/2

e−βc(µ−1−ε/2) + e−βcε/2
> eβc(µ−1−ε/2).

Together with (4.16) this yield an upper bound for (4.17):

0 < µ − 1 − 1

2
ε <

1

βc
ln

1 − p

p
≤ 1

2
ln

1 − p

p
<

1 − 2p

2p
. (4.19)

But (4.19) implies that (4.14) has no solution βc, since for large ε we obtain

p
tanh 1

2βc(µ − ε − 1)

µ − ε − 1
+ (1 − p)

tanh 1
2βc(µ − 1)

µ − 1
(4.20)

<
p

ε + 1 − µ
+ 1 − p

µ − 1
<

p

ε/2 − (1 − 2p)/2p
+ 1 − p

ε/2
< 1.

We assumed that p < 1/2. Therefore by (4.20), our conclusion is true, in fact, for

ε ≥ 1/p ≥ 2 = εcr . (4.21)

The same result follows in the case p ≥ 1/2, if we interchange p and 1 − p and
µ − 1 and 1 + ε − µ in the above argument.

Next we show that for any other ρ ∈ (0, 1), i.e. for any ρ 
= 1 − p, the critical
βc(ρ) < +∞, i.e. for these densities one always has Bose–Einstein condensation
at low temperatures.

To this end suppose that there is ρ∗ ∈ (0, 1) such that ρ∗ 
= 1 − p, but
limρ→ρ∗ βc(ρ) = +∞. Then the left-hand side of (4.14) converges to

lim
β→∞

Fp,ε(β,µ) = Mp(µ, ε) := p

|µ − ε − 1| + 1 − p

|µ − 1| . (4.22)

The number of solutions of Eq. (4.14) in the limit limρ→ρ∗ βc(ρ) = +∞ depends
on the value of ε > 0, but two singular points µ = 1 and µ = 1 + ε of the function
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(4.22) ensure (for nontrivial values of the probability: p 
= 0 and p 
= 1) that there
are always at least two solutions: µ1(ε) < 1 and µ2(ε) > 1 + ε of equation

Mp(µ, ε) = 1. (4.23)

If limρ→ρ∗ βc(ρ) = +∞, then for these two cases the Eq. (4.15) implies:

ρ∗ = lim
ρ→ρ∗ G p,ε(βc(ρ), µ1(ε) = 0,

ρ∗ = lim
ρ→ρ∗ G p,ε(βc(ρ), µ2(ε) = 1.

This contradicts our assumptions on ρ∗ and makes impossible the hypothesis
limρ→ρ∗ βc(ρ) = +∞.

Notice that the function Mp(µ, ε) has a minimum µ(ε) ∈ (1, 1 + ε). If
Mp(µ(ε), ε) < 1 (which is equivalent to ε > εp := 1 + 2

√
p(1 − p)), then

Eq. (4.23) has two complementary solutions µ∓(ε):

µ∓(ε) = ε + 3

2
− p ∓

√
(

ε − 1

2

)2

− p(1 − p), (4.24)

such that

1 < µ−(ε) < µ(ε) < µ+(ε) < 1 + ε.

If limρ→ρ∗ βc(ρ) = +∞, then for these two solutions Eq. (4.15) implies:

ρ∗ = lim
ρ→ρ∗ G p,ε(βc(ρ), µ∓(ε)) = 1 − p,

This again contradicts our assumption about ρ∗, and thus proves the assertion:
βc(ρ) < +∞ for any ρ 
= 1 − p.

Notice that by (4.24) the equation Mp(µ(ε), ε) = 1 has a unique solution
ε = εp ≤ εcr = 2, and one obtains Mp(µ(ε), ε) > 1 for all ε < εp, which excludes
complementary solutions µ∓(ε). On the other hand, if

ε > εcr = max
p

εp = εp=1/2, (4.25)

there are always complementary solutions (4.24). This may restrict the values of
ρ, for which we have bounded critical βc(ρ), to a certain domain of densities.

To this end we consider first the ρ -independent Eq. (4.14). Notice that
Fp,ε(β,µ) is a monotonously increasing function of β, so there is a unique solution
β̃c(µ) of equation (4.14) for a given µ, if there is one.

Since (tanh u)/u ≤ 1, then the left-hand side of (4.14) is less than 1, for
β ≤ 2. On the other hand, as β → ∞, the left-hand side of (4.14) converges to
Mp(µ, ε). Since the function (4.22) is singular at µ = 1 and µ = 1 + ε, a solution
2 < β̃c(µ) < +∞ for a certain µ always exists, and the set of those µ is defined
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by the condition:

Sp,ε := {
µ ∈ R

1 : lim
β→∞

Fp,ε(β,µ) = Mp(µ, ε) ≥ 1
}

(4.26)

By (4.22) the set (4.26) for ε > 0 is a compact in R
1
+. If there are no complementary

solutions µ∓(ε), this compact is connected, but if

ε > εcr . (4.27)

it contains two domains separated by a gap:

I (ε, p) := (µ−(ε) , µ+(ε)),

see (4.24). The gap I (ε, p) ⊂ (1, 1 + ε). There is no solutions β̃c(µ) for µ ∈
I (ε, p) and for

µ < (ε + 1)/2 −
√

((ε − 1)/2)2 − ε(1 − p),

or for

µ > (ε + 3)/2 +
√

((ε + 1)/2)2 − ε(1 − p).

Hence, for large ε (4.27) the set Sp,ε is a union of two (separated by the gap I (ε, p))
bounded domains, which are vicinities of singular points µ = 1 and µ = 1 + ε.

To understand, how the gap in the chemical potential for solution β̃c(µ) mod-
ify the behaviour of βc(ρ), we have to consider the ρ -dependent Eq. (4.15). Notice
that from (4.15) one obtains β̂c(µ, ρ) as a function of two variables. Therefore,
βc(ρ) is a solution of equation:

β̃c(µ) = β̂c(µ, ρ), (4.28)

which in fact connects µ and ρ: µ(ρ), i.e. βc(ρ) = β̃c(µ(ρ)) = β̂c(µ(ρ), ρ).
Clearly, the left-hand side G p,ε(β,µ) is increasing in µ and it tends to 0 as

µ → −∞ and to 1 as µ → +∞. Excluding ρ = 0 or 1, there is therefore a unique
solution µ(β, ρ) of (4.15) for each value of β. As β → 0, G p,ε(β,µ) tends to 1/2
at constant µ. Therefore, if ρ 
= 1/2

lim
β→0

µ(β, ρ) = ±∞,

depending on whether ρ > 1/2 or ρ < 1/2.
On the other hand, in the limit β → ∞, we have that G p,ε(β,µ): (a) tends

to 0, if µ < 1; (b) to (1 − p)/2, if µ = 1; (c) to 1 − p, if 1 < µ < 1 + ε; (d) to
1 − p/2, if µ = 1 + ε, and (e) to 1, if µ > 1 + ε.

The (a) − (e) give relation between ρ and µ for large β: if 0 < ρ < 1 − p,
we must have µ(β, ρ) → 1 and, if 1 − p < ρ < 1, we obtain µ(β, ρ) → 1 + ε,
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for β → ∞. At ρ = 1 − p, we have to use the representation (4.18), that yields

µ(β, ρ = 1 − p) = 1 + 1

2
ε − 1

2β
ln

p

1 − p
+ o(β−1), (4.29)

if β is large. In particular, this justifies the remark (4.21) above about εcr = 2,
since 1 + ε/2 lies in the gap I (ε, p) only if ε ≥ 2 = εcr, see (4.24).

Hence, it follows that for ρ 
= 1 − p two functions of µ corresponding to
solutions (4.28) of Eqs. (4.14), (4.15) must intersect. On the other hand, (4.21)
proves that they can not intersect for ρ = 1 − p , if ε > εcr. In fact, we can derive
upper bounds for βc(ρ) in the case ρ 
= 1 − p and |ρ − 1 + p| small.

To this end we first consider the case ρ > 1 − p. Let us assume p ≤ 1/2.
(The case p > 1/2 can be studied similarly.) Writing ρ = 1 − p + δ/2 we present
the Eq. (4.15) in the form

p tanh
1

2
βc(ε + 1 − µ) = (1 − p) tanh

1

2
βc(µ − 1) + 2p − 1 − δ. (4.30)

Identity (4.30) implies that µ > 1 + ε/2, since otherwise we get a contradiction:

1 − 2p + δ = −p tanh
1

2
βc(ε + 1 − µ) + (1 − p) tanh

1

2
βc(µ − 1) ≤

− p tanh
1

2
βc(ε + 1 − µ) + (1 − p) tanh

1

2
βc(ε + 1 − µ) ≤ 1 − 2p.

On the other hand, for ε ≥ 1, one gets the upper limit µ < ε + 1. Indeed, if we
suppose the opposite: µ ≥ ε + 1, then (4.15) and the general fact that βc ≥ 2 (see
(4.16)) yield

1 − 2p + δ = p tanh
1

2
βc(µ − ε − 1) + (1 − p) tanh

1

2
βc(µ − 1)

≥ (1 − p) tanh
1

2
βc(µ − 1) ≥ (1 − p) tanh ε.

But this is impossible for (large) ε verifying:

ε >
1

2
ln

2 − 3p + δ

p − δ
. (4.31)

Therefore, we obtain for µ the lower and upper bounds:

1 + ε/2 < µ < 1 + ε. (4.32)

Now identity (4.30), together with the bounds (4.32), inequality tanh(u) >

1 − 2e−2u and βc ≥ 2 (see (4.16)), yields the estimates:

1 − δ

p
− 2

p
e−ε < tanh

1

2
βc(ε + 1 − µ) < 1 − δ

p
. (4.33)

1 >
p − δ − 2e−ε

ε + 1 − µ
+ (1 − p)

1 − 2e−ε

µ − 1
>

βc(p − δ − 2e−ε)

ln(2p/δ)
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and hence,

βc <
1

p − δ − 2e−ε
ln(2p/δ). (4.34)

The upper bound (4.34) holds for example, if δ < p/2 and ε > ln(4/p).
Now we consider the case ρ < 1 − p and suppose p ≤ 1/2, since p > 1/2

can be studied similarly. Then we write: ρ = 1 − p − δ/2. Eq. (4.15) now reads
as

(1 − p) tanh
1

2
βc(µ − 1) = p tanh

1

2
βc(1 + ε − µ) + 1 − 2p − δ. (4.35)

An argument similar to the case ρ > 1 − p shows that

1 < µ < 1 + ε, (4.36)

if ε is large enough and δ < 1 − p. Indeed, if we suppose the opposite: µ ≥ 1 + ε,
then

1 − 2p − δ ≥ (1 − p) tanh
1

2
βc(µ − 1) ≥ (1 − p) tanh ε,

which is impossible for

ε >
1

2
ln

2 − 3p − δ

p + δ
.

Similarly, if we suppose that µ ≤ 1, then (4.35) implies

0 > p tanh
1

2
βc(1 + ε − µ) + 1 − 2p − δ > p tanh ε + (1 − 2p − δ),

which is impossible if δ < 1 − 2p , or if 1 − 2p ≤ δ < 1 − p and

ε >
1

2
ln

3p − 1 + δ

1 − p − δ
.

Now, (4.35) and (4.36) imply that

tanh
1

2
βc(µ − 1) < 1 − δ

1 − p
. (4.37)

In the case µ ≥ 1 + 1
2ε this yields immediately the upper bound:

βc <
2

ε
ln

2(1 − p)

δ
. (4.38)

On the other hand, if 1 < µ < 1 + ε/2, then by (4.35) and βc ≥ 2 we obtain

(1 − p) tanh
1

2
βc(µ − 1) > p tanh

1

4
βcε + 1 − 2p − δ > p tanh

1

2
ε

+ 1 − 2p − δ > p(1 − 2e−ε) + 1 − 2p − δ = 1 − p − δ − 2pe−ε. (4.39)
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Taking into account equation (4.14) and estimates (4.37), (4.39), we get

1 >
1 − p − δ − 2pe−ε

µ − 1
> βc

1 − p − δ − 2pe−ε

ln(2(1 − p)/δ)
,

that gives the upper bound:

βc <
1

1 − p − δ − 2pe−ε
ln

2(1 − p)

δ
. (4.40)

4.2.2. Bernoulli Random Potential for the Case λ < +∞
We assume in this subsection that λ > ε + 1. If the repulsion is very large

(λ � ε + 1), the analysis for ρ < 1 is then almost the same as above for λ = +∞,
whereas for ρ ≥ 1, which is possible only for finite λ, one needs some more
arguments.

Here we start with the estimate the first-order correction in λ−1 to the value of
εcr(λ = +∞) = 2. With this accuracy the Eqs. (4.5) and (4.6) can be approximated
correspondingly by

p

(
tanh 1

2β(µ − ε − 1)

µ − ε − 1
+ 1

2λ + ε + 1 − µ

e−β(1+ε−µ)/2

cosh 1
2β(1 + ε − µ)

)

+ (1 − p)

(
tanh 1

2β(µ − 1)

µ − 1
+ 1

2λ + 1 − µ

eβ(µ−1)/2

cosh 1
2β(µ − 1)

)

= 1,

(4.41)

and by (4.15) as above.
To see this, note that if ρ < 1, the dominant contribution in (4.6) must come

from the n = 1 term, i.e. we must have h1 < h2, so µ < 1 + 2λ + ε. The other
terms in (4.6) are then exponentially small and can be neglected, which leads again
to (4.15).

Now, because of the presence of e−βh1 in the n = 2 term of (4.4), it cannot
be neglected in (4.5) and we obtain:

2p

1 + e−β(1+ε−µ)

{
e−β(1+ε−µ) − 1

µ − 1 − ε
+ 2

e−β(1+ε−µ)

1 + 2λ + ε − µ

}

+ 2(1 − p)

1 + e−β(1−µ)

{
e−β(1−µ) − 1

µ − 1
+ 2

e−β(1−µ)

1 + 2λ − µ

}

= 2,

which is the same as (4.41).
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Similar to (4.22) the gap equation for 1 < µ < 1 + ε can be obtained from
(4.41) in the limit β → ∞:

p

ε + 1 − µ
+ (1 − p)

(
1

µ − 1
+ 2

2λ + 1 − µ

)

= 1. (4.42)

If ρ = 1 − p, then by (4.15) and (4.29) we again obtain the limit: µ → 1 + 1
2ε

for β → ∞. Inserting this limit into (4.42) we obtain

2

ε
+ 2(1 − p)

2λ − 1
2ε

= 1. (4.43)

Hence, by the reasoning similar to those after (4.29), we obtain the critical value
of the Bernoulli random potential εcr(λ) the expression:

εcr(λ) ≈ 2

1 − (1 − p)/λ
= 2 + 2(1 − p)/λ + . . . , (4.44)

which takes into account that λ is large but finite.
Another observation, which is related to the finiteness of λ, concerns the

value βc(ρ = 1). For hard-core bosons the arguments in the Sec. 4.2.1 show that
this value is infinite and the corresponding values of the chemical potential must
be greater than 1 + ε, see (4.6). Now for finite λ and µ > 1 + ε the limit of (4.41),
when β → ∞, reads as:

p

(
1

µ − ε − 1
+ 2

2λ + 1 + ε − µ

)

+ (1 − p)

(
1

µ − 1
+ 2

2λ + 1 − µ

)

= 1.

(4.45)
If ρ ≥ 1, then we need to reconsider the density Eq. (4.6), which has the form:

ρ = p

∑∞
n=1 n e−βhn (µ−ε,λ)

∑∞
n=0 e−βhn (µ−ε,λ)

+ (1 − p)

∑∞
n=1 n e−βhn (µ,λ)

∑∞
n=0 e−βhn (µ,λ)

. (4.46)

Notice that if β → +∞, then by (4.2) and (4.46) one obtains the following limits:
ρ → 1, when µ ∈ (1 + ε, 1 + 2λ) , ρ → 2 − p, when µ ∈ (1 + 2λ, 1 + 2λ + ε),
and ρ → 2, when µ ∈ (1 + 2λ + ε, 1 + 4λ).

Therefore, at ρ = 1 for large β we can ignore in (4.46) the terms higher than
h2, see (4.2), and write in this limit:

1 ≈ p

{
e−β(1+ε−µ) + 2e−2β(1+λ+ε−µ)

1 + e−β(1+ε−µ) + e−2β(1+λ+ε−µ)

}

+ (1 − p)

{
e−β(1−µ) + 2e−2β(1+λ−µ)

1 + e−β(1−µ) + e−2β(1+λ−µ)

}

= p

{
1 + 2e−β(1+ 2λ+ε−µ)

1 + e−β(µ−1−ε) + e−β(1+2λ+ε−µ)

}
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+ (1 − p)

{
1 + 2e−β(1+2λ−µ)

1 + e−β(µ−1) + e−β(1+2λ−µ)

}

≈ 1 + p
(
e−β(1+2λ+ε−µ) − e−β(µ−1−ε)

)

+ (1 − p)
(
e−β(1+2λ−µ) − e−β(µ−1)

)
. (4.47)

This yields

e2βµ ≈ e2β(1+λ) 1 − p + peβε

1 − p + pe−βε
≈ p

1 − p
e2β(1+λ+ 1

2 ε).

The chemical potential defined by Eq. (4.46) therefore tends (for ρ = 1) to
1 + λ + 1

2ε as β → +∞.
Therefore, inserting this into (4.45) we obtain the estimate for the value of

repulsion λc,1 that ensures that βc(ρ = 1) = +∞ in the presence of the random
Bernoulli potential:

λc,1(ε) = 1

2

[

3 +
√

9 + 2ε(1 − 2p + 1

2
ε)

]

. (4.48)

Remark 4.1. In the absence of disorder, i.e. if ε = 0, the critical value of λ is
λc,1 = 3 as opposed to λ1 = 1

2 (3 + √
8) as suggested in Ref. 4. The reason is the

same as above for εcr, namely, the graph of µ(β, ρ) at ρ = 1 tends to 1 + λ as
β → +∞ and this lies in the gap only if λ ≥ 3. Similarly, the next critical values
are given by

λc,k(ε = 0) = 2k + 1. (4.49)

Remark 4.2. In Sec. 4.2.1 we notice a new phenomenon specific for the random
case: divergence of βc at ρ = 1 − p for hard-core bosons, cf. Fig. 1 for p = 1/2.
Instead of fixing λ, fixing ε > 2 it follows from (4.43) that there is a critical value
of the repulsion λc,1−p(ε) (instead of ε as in (4.44)) so that βc(ρ = 1 − p) diverges
for λ ≥ λc,1−p(ε) in the presence of the random Bernoulli potential:

λc,1−p(ε) = ε

4
+ ε(1 − p)

ε − 2
. (4.50)

This critical value is not evident from Fig. 1 as ε = 2.

Remark 4.3. In Sec. 4.1 we remarked that the critical temperature for free
bosons increases due to disorder. We also remarked that for the interacting case
this is a more subtle matter, since it depends on the value of repulsion. For large
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Fig. 1. βc as a function of the density ρ in the case of averaging over two energies: 0 and ε = 2 with
equal probabilities, for various values of λ: λ = 3, 3.3, 4, 6, 10 and +∞. The top graph corresponds
to the case ε = 4.5 and λ = 10.

repulsions close to e.g. λc,1(ε = 0) = 3, we get by (4.48) that

βc(ρ = 1; λ = 3, ε > 0) < βc(ρ = 1; λ = 3, ε = 0) = +∞. (4.51)

This lowering of βc(ρ = 1) can be explained intuitively as follows. At density
ρ = 1, there is one particle per site. If ε = 0 there is a penalty for a particle to
jump to an already occupied site, so the preferred state is where the particles are at
fixed sites, which is almost an eigenstate of the number operators nx for each site.
This prevents Bose condensation. (This argument was presented also in Ref. 4.)
However, if ε > 0, then the lattice splits into two parts with energies 0 and ε, and
a particle jumping from a site with energy ε to a site with energy 0 loses an energy
ε, which counteracts the gain of λ. This creates more freedom of movement and
therefore promotes Bose condensation. On the other hand, for a fractional value
of the ρ in the neighbourhood of ρ = 1 − p, the critical temperature decreases
with increasing ε as can be seen from Fig. 1.

Now consider the case ρ > 1. From Eq. (4.46) we see that at fixed ρ ∈
(1, 2 − p), µ → 1 + 2λ and for ρ ∈ (2 − p, 2), µ → 1 + 2λ + ε as β → ∞.

For the case ρ = 2 − p, we have to expand (4.46), as above for ρ = 1, see
(4.47), but to take into account that µ ∈ (1 + 2λ, 1 + 2λ + ε):

ρ ≈ p

{
1 + 2e−β(1+ 2λ+ε−µ)

1 + e−β(µ−1−ε) + e−β(1+2λ+ε−µ)

}

+ (1 − p)

{
eβ(1+2λ−µ) + 2

1 + eβ(1+2λ−µ) + e−2β(µ−1−λ)

}

≈ 2 − p + p
(
e−β(1+ε+2λ−µ) − e−β(µ−1−ε)

)

− (1 − p)e−β(µ−1−2λ) − 2(1 − p)e−2β(µ−1−λ). (4.52)



Condensation in a Disordered Infinite-Range Hopping Bose–Hubbard Model 1169

This yields that e−β(µ−1−2λ) ≈ e−β(1+ε+2λ−µ) p/(1 − p) for large β, i.e. µ → 1 +
2λ + 1

2ε, if ρ = 2 − p and β → ∞.
For µ ≈ 1 + 2λ + 1

2ε, one has h1(µ − ε, λ) < h2(µ − ε, λ). So that the
p-terms in (4.41) are unchanged, but h1(µ, λ) > h2(µ, λ) < h3(µ, λ), if λ > ε/4,
which corresponds to our initial hypothesis about the value of repulsion: λ > 1 + ε.
Hence, the (1 − p)-terms are now dominated for large β by n = 2 and (4.41) read
as

p

1 + e−β(1+ε−µ)

{
e−β(1+ε−µ) − 1

µ − 1 − ε
+ 2

e−β(1+ε−µ)

1 + 2λ + ε − µ

}

+ 1 − p

e−β(1−µ) + e−2β(1−µ+λ)

{

2
e−2β(1−µ+λ) − e−β(1−µ)

µ − 1 − 2λ
+ 3

e−2β(1−µ+λ)

1 + 4λ − µ

}

≈ 1,

In the limit β → ∞ we obtain from this relation the gap equation

p

(
1

µ − 1 − ε
+ 2

1 + ε + 2λ − µ

)

+ (1 − p)

(
2

µ − 1 − 2λ
+ 3

1 + 4λ − µ

)

= 1. (4.53)

Inserting µ = 1 + 2λ + 1
2ε into (4.53) leads to

1

2
ε2 − (2λ − 1 + 2p)ε + 8λ = 0. (4.54)

Solutions of (4.54) are:

εcr,±(2) = (2λ − 1 + 2p) ±
√

(2λ − 1 + 2p)2 − 16λ. (4.55)

Hence, there is a solution that for large λ has the form:

ε(2)
cr (λ) = 4

(

1 + 3 − 2p

2λ

)

+ . . . , (4.56)

or other way around, for a given ε we have:

λc,ρ=2−p(ε) = 2(3 − 2p)

(ε − 4)
. (4.57)

Clearly, this critical value applies only if ε > 4. The top graph of Figure 1 illustrates
this behaviour at ρ = 1.5 for ε = 4.5 and λ = 10.

The critical βc(ρ) for the Bernoulli distribution with p = 1/2 and ε = 2 is
shown in Figure 1 for a number of values of λ. Notice in particular that ε < εcr (λ),
see (4.44), for all finite λ, so that βc(ρ = 1/2) < +∞.

Also, for λ = 3.3, one obtains βc(ρ = 1) < +∞ because 3.3 < λc,1

(ε = 2) = (3 + √
13)/2, see (4.48).
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4.2.3. Trinomial Distribution: λ = +∞
We also briefly consider the trinomial distribution, taking for simplicity equal

probabilities, i.e.

εω =
⎧
⎨

⎩

0 Pr = 1/3
1
2ε Pr = 1/3
ε Pr = 1/3.

(4.58)

For hard-core bosons, λ = +∞, Eq. (4.12) for the critical value of βc(ρ) takes the
form:

1

3

[
tanh 1

2β(µ − 1)

µ − 1
+ tanh 1

2β
(
µ − 1 − 1

2ε
)

µ − 1 − 1
2ε

+ tanh 1
2β(µ − 1 − ε)

µ − 1 − ε

]

= 1.

(4.59)
The density Eq. (4.13) now reads as

ρ = 1

2
+ 1

6

(

tanh
1

2
β(µ − 1) + tanh

1

2
β
(
µ − 1 − 1

2
ε
)+ tanh

1

2
β(µ − 1 − ε)

)

.

(4.60)
Then by the same analysis as in Sec. 4.2.1 one gets from (4.60):

lim
β→∞

ρ(β,µ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if µ < 1
1/6 if µ = 1
1/3 if 1 < µ < 1 + ε/2
1/2 if µ = 1 + ε/2
2/3 if 1 + ε/2 < µ < 1 + ε

5/6 if µ = 1 + ε

1 if µ > 1 + ε.

Alternatively, this can be also expressed as:

lim
β→∞

µ(β, ρ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if 0 < ρ < 1/3;
1 + ε/4 if ρ = 1/3;
1 + ε/2 if 1/3 < ρ < 2/3;
1 + 3ε/4 if ρ = 2/3;
1 + ε if ρ > 2/3.

Again, similar to the reasoning in Sec. 4.2.1, inserting µ = 1 + ε/4 or µ =
1 + 3ε/4 into the limiting Eq. (4.59) for β → +∞ yields the critical value of the
random potential:

εcr = 28

9
. (4.61)

Therefore, (similar to the Bernoulli case for ρ = 1/2) the condensation of
hard-core bosons is absent at densities ρ = 1/3 and ρ = 2/3, if ε ≥ εcr. This
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Fig. 2. βc as a function of the density ρ in the case of a trinomial distribution with width ε = 10 for
λ = 3, 4, 6 and 8.

phenomenon of course persists for λ < +∞ and there are similar suppressions of
Bose condensation at ρ = 4/3, 5/3, etc., if ε is large enough.

4.2.4. Trinomial Distribution: λ < +∞
For λ < +∞ there is a similar enhancement of Bose condensation at ρ = 1

as for the Bernoulli distribution, but the effect is stronger. This can be seen in
Figure 2. The explanation is similar to that in Remark 4.3, except now the lattice
splits into 3 equal parts with energies 0, ε/2 and ε. Particles can jump from a
singly-occupied site with energy ε to a singly-occupied site with energy 0 or ε/2,
thus compensating for the energy penalty of λ due to double occupation.

By Eq. (4.13) for (4.58) we obtain that at ρ = 1, µ(β, ρ) → 1 + λ + ε/2 as
β → +∞. The gap equation (4.59) then reduces to

1

λ − ε/2
+ 1

λ
+ 1

λ + ε/2
= 1.

We can solve it for ε provided λ ≥ 3:

εcr(λ) = 2λ

√
λ − 3

λ − 1
. (4.62)

Thus, Bose condensation is absent, if λ ≥ 3 and ε ≤ εcr(λ).
Figure 2 shows βc(ρ) for a fixed ε = 10 and for values of λ ≥ 3. Then

ε ≥ εcr(λ = 3, 4, 6), but ε < εcr(λ = 8) = 13.52, which excludes condensation at
ρ = 1 in the latter case.
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Fig. 3. βc as a function of the density ρ in the case of averaging over 10 energy values with width
ε = 10 for λ = 8.

4.2.5. General Discrete Distribution

The same phenomena persist for higher numbers of random potential energy
values, but the critical value εcr(λ) becomes rapidly very large. Figure 3 shows the
case of a distribution with equal probabilities Pr = 1/10 at 10 equidistant values
of εω (with maximal value ε = 10) for λ = 8. Clearly, condensation is suppressed
at ρ = 1/10, . . . , 9/10 and ρ = 1, 2 but not at corresponding fractional values
above 1, cf. Figure 2.

4.3. Continuous Distribution

4.3.1. The Case λ = +∞
Consider i.i.d. random potential with homogeneous distribution between 0

and ε. In case λ = +∞ the Eqs. (4.12) and (4.13) become

1

ε

∫ ε

0

tanh 1
2β(µ − 1 − x)

µ − 1 − x
dx = 1 (4.63)

and

1

ε

∫ ε

0
tanh

1

2
β(µ − 1 − x) dx = 2ρ − 1. (4.64)

The latter has sense only for 0 ≤ ρ ≤ 1 and can be solved exactly for µ:

2

βε
ln

eβ(µ−1)/2 + e−β(µ−1)/2

eβ(µ−1−ε)/2 + e−β(µ−1−ε)/2
= 2ρ − 1,
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and hence

µ(β, ρ) = 1 + 1

2
ε + 1

β
ln

sinh 1
2βρε

sinh 1
2β(1 − ρ)ε

. (4.65)

As β → +∞, the expression (4.65) takes the form

lim
β→+∞

µ(β, ρ) := µ(ρ) = 1 + ερ, 0 < ρ < 1, (4.66)

whereas µ(ρ = 0) ∈ (−∞, 1] and µ(ρ = 1) ∈ [1 + ε,+∞) for extreme values of
density, i.e., the inverse function is

ρ(µ) =
⎧
⎨

⎩

0 µ ≤ 1
(µ − 1)/ε 1 < µ < 1 + ε

1 1 + ε ≤ µ.

(4.67)

Then by (4.63) and (4.67) we obtain for ρ = 1 in the limit β → +∞:

1 = 1

ε

∫ ε

0

1

µ − 1 − x
dx,

or we get explicitly the value of the chemical potential

µ(ρ = 1) = 1 + ε

1 − e−ε
> 1 + ε,

and similarly

µ(ρ = 0) = 1 − εe−ε

1 − e−ε
< 1.

Hence, for hard-core bosons the critical βc(ρ) is infinite at extreme densities
ρ = 0, 1 for any value ε > 0 of the uniform continuous distribution.

If 0 < ρ < 1, then solution of the Eq. (4.64) in the limit β → +∞ is (4.66),
whereas the integral in (4.63) diverges. Therefore, if the critical βc(0 < ρ < 1)
exist, it must be bounded. Moreover, since (tanh u)/u ≤ 1, by (4.63) we get for it
a bound from below: 2 < βc(0 < ρ < 1).

To prove the existence and uniqueness of βc(0 < ρ < 1) consider first (4.64)
for ρ ≤ 1

2 . Then by virtue of (4.65) for any finite β the solution µ(β, ρ) increases
from −∞ to 1 + ε/2 when ρ changes from 0 to 1/2. For this variation of chemical
potential the integral in the left-hand side of (4.63) increases monotonously from
0 to its maximal value given by

I (β,µ = 1 + ε/2) = 1

ε

∫ ε

0

tanh 1
2β(x − ε/2)

x − ε/2
dx . (4.68)

Indeed,

∂µ I (β,µ) = 1

ε

(
tanh 1

2β(µ − 1)

µ − 1
− tanh 1

2β(µ − 1 − ε)

µ − 1 − ε

)

≥ 0
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for µ ≤ 1 + ε/2. The integral in (4.68) is obviously an increasing function of β. So,
there exist β0 > 2 such that the maximal value of integral I (β0, µ = 1 + ε/2) ≥ 1.
Hence, for any β ≥ β0 there is a unique density 0 < ρ(β) ≤ 1/2 such that

I (β,µ(β, ρ(β)) = 1. (4.69)

Notice that by (4.65) µ(β, ρ) is increasing of the both arguments: β and 0 <

ρ ≤ 1/2. Hence, to satisfy (4.69) ρ(β) must be decreasing function of β, i.e., the
inverse function βc = βc(ρ) is also a decreasing with limρ→0 βc(ρ) = +∞ and
limρ→1/2 βc(ρ) ≥ β0.

Similar arguments are valid for 1/2 ≤ ρ < 1. Whereas µ(β, ρ) is still increas-
ing function of ρ, the integral I (β,µ) now decreases with µ from its maximal
value (4.68) to 0. Therefore, βc = βc(ρ) is a monotonously increasing function
of ρ with limρ→1/2 βc(ρ) ≥ β0 and limρ→1 βc(ρ) = +∞ , i.e. with a minimum at
ρ = 1/2 as we have seen for discrete distributions and hard-core bosons.

4.3.2. The Case of Large λ < +∞
By virtue of Eqs. (4.5) and (4.6), for λ < +∞, the Bose condensate is still

suppressed at ρ = k.
The analysis is very similar to the case ε = 0. In the limit β → +∞ by (4.6)

the density tends to (k = 0, 1, . . .)

ρ(µ, β) →

⎧
⎪⎨

⎪⎩

0 if µ < 1

k + 1
ε
(µ − 1 − 2kλ) if 1 + 2kλ < µ < 1 + 2kλ + ε

k + 1 if 1 + 2kλ + ε < µ < 1 + 2(k + 1)λ.

(To see this note that if 1 + 2kλ < µ < 1 + 2kλ + ε then the term e−βhk+1 domi-
nates for x < µ − 1 − 2kλ and the term e−βhk dominates for x > µ − 1 − 2kλ.)
Clearly, if 0 < ρ < 1 then for solution of (4.6) one gets as above: µ(β, ρ) →
1 + ρε when β → +∞. If ρ = 1, we need to approximate (4.6) more carefully:

1 ≈ 1

ε

∫ ε

0

eβ(µ−1−x) + 2e2β(µ−1−x−λ)

1 + eβ(µ−1−x) + e2β(µ−1−x−λ)
dx

≈ 1

ε

∫ ε

0

[
1 + e−β(1+x+2λ−µ) − e−β(µ−1−x)

]
dx .

Working out the integral, we find that µ(β, ρ = 1) → 1 + λ + 1
2ε as β → +∞.

More generally, if ρ = k, µ(β, ρ = k) → 1 + (2k − 1)λ + 1
2ε. For large β, the

gap Eq. (4.5) becomes

1

ε

∫ ε

0

{
k

µ − 1 − 2(k − 1)λ) − x
+ k + 1

1 + 2kλ + x + 2λ − µ

}

dx = 1.
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Inserting µ = 1 + (2k − 1)λ + 1
2ε we obtain that

1

ε

∫ ε

0

{
k

λ + 1
2ε − x

+ k + 1

λ − 1
2ε + x

}

dx = 1.

This gives for the critical values of repulsion:

λc,k(ε) = 1

2
ε

eε/(2k+1) + 1

eε/(2k+1) − 1
. (4.70)

It is easy to see that this is larger than for non-random case λc,k(0) = 2k + 1 and
agrees with the value mentioned above at ε = 0, see Sec. 4.2.2.

Figure 4 shows the phase diagram for λ = 10 with ε = 3, taking an average
over a uniform distribution corresponding to 10 equidistant random values of εω

in the interval [0, 3]. It shows that this already approximates the continuous case
quite well.

4.3.3. The Case of Small λ > 0

We finally consider the case of small λ. Figure 5 shows that, in contradistinc-
tion to the case λ = 0, for small λ the critical βc(λ, ε) > βc(λ = 0, ε = 0), i.e. it
is larger than that at ε = 0!

This can be understood as follows. Whereas in the free case λ = 0, we must
have µ < 0, when λ > 0, this is no longer so. In the limit λ → 0, we can replace
e−βhn (µ,λ) in the expression (4.4) for p̃′′(β,µ, λ; 0) occurring in the gap Eq. (4.5)
by eβ(µ−1). Replacing also hn−1 − hn (see (4.2)) by µ − 1 the series (4.4) can be

14

12

10

 8

 6

 4

 2

 0
 0 1 2 2.51.50.5

Fig. 4. βc as a function of the density ρ in the case of a near-continuous distribution: averaging over
10 energy values with width ε = 3 for λ = 10. The lower graph is the case without randomness.
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summed and we obtain for (4.5):

1

ε

∫ ε

0

1

1 + x − µ
dx = 1.

If ε = 0 this leads to the free gas critical value µ = 0, but for ε > 0 we obtain

µ = eε − 1 − ε

eε − 1
> 0. (4.71)

Similarly, the density Eq. (4.6) now reads as

1

ε

∫ ε

0

1

eβ(1−µ+x) − 1
dx = ρ. (4.72)

By (4.71) we can approximate for small ε µ by µ ≈ ε/2 and inserting it in
(4.72) we find

1

ε

∫ ε

0

1

eβ(1−ε/2+x) − 1
dx = ρ. (4.73)

By convexity of the function (eβ(1+x) − 1)−1, we conclude for solution of the
Eq. (4.73) that

βc(ρ, ε) > βc(ρ, 0) = ln

(

1 + 1

ρ

)

.

Notice that this argument also applies in the case of a discrete distribution, see
Fig. 5.

6

5

4

3

2

1

0
0 0.5 1.51 2

Fig. 5. βc as a function of the density ρ in the case of averaging over two energies and width ε = 2
for small λ = 0.1. For comparison, the lower graph shows the case without randomness.
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5. CONCLUSION

We conclude with a few remarks concerning our results and open problems.
Summarizing the most striking observations about the model considered in this
paper, we have seen that at large values of the on-site repulsion with a discrete
distribution of the i.i.d. random single-site particle potential, the disorder causes a
suppression of Bose–Einstein condensation at fractional values of the density. On
the other hand, the suppression of Bose–Einstein condensation at integer values
of the density observed in the absence of disorder may be lifted. For continuous
distributions we found that the critical temperature decreases with increasing
disorder for non-integer densities.

We have concentrated here on the case of an independent identically and
uniformly distributed random external potential. Nonuniform distributions as well
as a random on-site interaction may also be of interest and give rise to new
phenomena. Of course, all our results concern the infinite-range-hopping model.
It would be of considerable interest to extend our results to the short-range hopping
model.
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